Alternatif Teknologi Energi Terbarukan untuk Mendukung Penurunan Emisi CO₂

Tatang H Soerawidjaja

Anggota Akademi Ilmu Pengetahuan Indonesia (AIPI), Ketua Umum Ikatan Ahli Bioenergi Indonesia (IKABI), Pemrakarsa Program Studi Teknik Bioenergi dan Kemurgi - Fakultas Teknologi Industri – Institut Teknologi Bandung (ITB)

Seminar Harian GAIKINDO 2021

Multiple Pathways to Reduce CO₂ Emission in Transportation Sector

Rabu,17 Nopember 2021

Pengantar

- Sesungguhnya, Tuhan Yang Maha Kuasa (YMK) mengaktifkan kehidupan dan praktis semua fenomena alam di planet bumi kita dengan menganugerahkan radiasi matahari.
- ➤ <u>Sinar surya</u> = satu-satunya **pendapatan alami** (*natural income*) **planet bumi** yang membuat kita mendapatkan :
 - \square Cahaya siang (daylight);
 - ☑ Makanan: biomassa tumbuhan = sumber primer makanan kita.
 - ☑ Kenyamanan dan tenaga dari air, angin, dan arus serta ombak laut.
- > Zat-zat kimia yang dikandung dan diturunkan dari biomassa tumbuhan (termasuk sumber daya fosil) adalah petunjukNYA tentang bagaimana menyimpan energi surya untuk jangka waktu tak berhingga!.
- > Sumber daya fosil: hibah (energi) hanya sekali dari YMK!.

Sekilas sejarah energi modern

- ➤ Sebelum zaman revolusi industri (1760 1840), kebutuhan energi manusia tidaklah banyak.
- Pemanasan dan penerangan :
 - ☑ sinar surya (siang), pembakaran kayu, jerami, dan kotoran-ternak kering;
 - ☑ minyak-minyak lemak (zaitun, kelapa, wijen, ikan) untuk minyak lampu.
- > Trasportasi :
 - ☑ darat : tenaga hewan (kuda, unta, dll.);
 - ☑ laut : tenaga angin.
- **Kerja mekanik** (dengan mesin sederhana):
 - ☑ tenaga hewan untuk menggiling (sereal dll.) dan membajak;
 - ☑ tenaga angin dan air untuk menggiling dan memompa air.
- > Dominan energi terbarukan!.

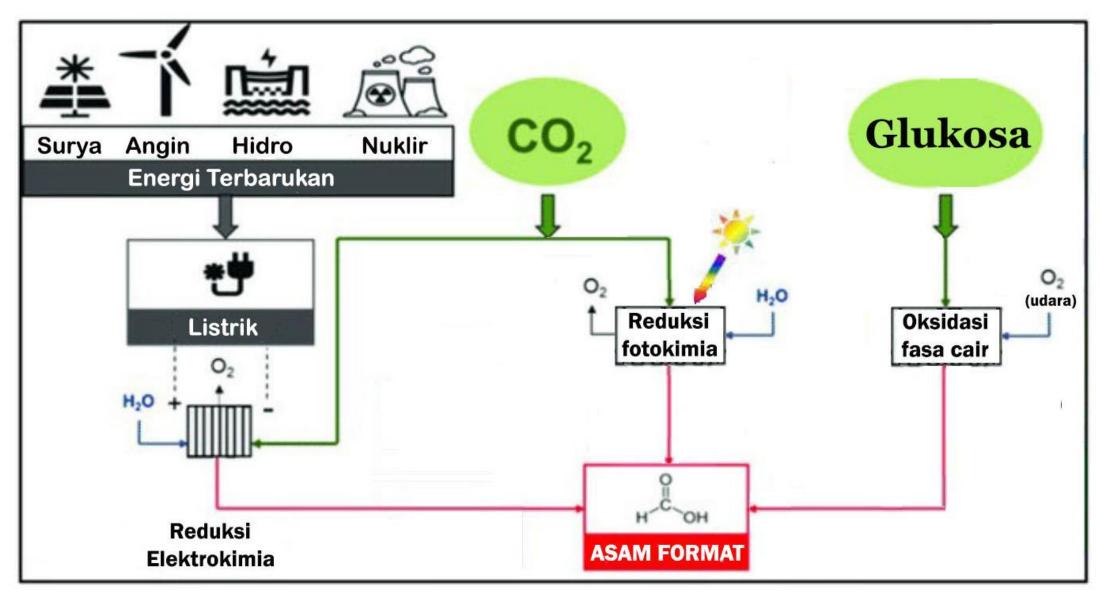
- Industri energi modern lahir tahun 1781 dengan invensi mesin/motor kukus (*steam engine*) oleh James Watt dan Thomas Newcomen.
 - ⇒ **Batubara** (yang sebenarnya sudah digunakan sejak "zaman manusia gua") dieksploitasi secara komersial berskala besar (→ kapal laut, kereta api).
- Industri **kerosin** dari distilasi-kering batubara (Abraham Gesner) mulai tahun 1854 dan dari distilasi minyak bumi (mulai ditambang 1846-1859) tahun 1860.
- > Industri bahan bakar cair bermutu tinggi mulai :
 - ☑ 1876 : invensi mesin/motor bensin (Nikolaus Otto) dan
 - ✓ 1895 : invensi mesin/motor diesel (Rudolf Diesel).
- > 1882 : Industri pembangkitan, transmisi, distribusi, & penjualan tenaga listrik (Thomas Alfa Edison, Nikola Tesla, Robert Hammond).
- Abad 20: energi = "oksigen/darah" perekonomian, listrik dan bahan-bahan bakar bermutu tinggi sebagai 2 tipe utama energi final komersial.
- > Dominasi sumber energi fosil!.

Indonesia dan transisi energi

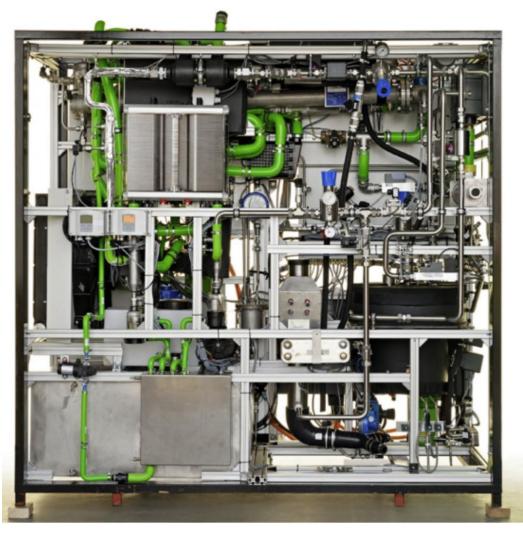
- ➤ Karena energi = "oksigen/darah" perekonomian, tiap negara/bangsa menjaga keterjaminan pasokan energinya (ketahanan energi, *energy security*).
- ➤ 1967 1997 (Orde Baru): Indonesia mampu menjaga tersedianya oksigen perekonomian (yaitu: minyak bumi) dan mendapat devisa dari surplus produksinya.
 - Perekonomian Indonesia di era Orde Baru pun melaju mantap dengan sektor industri manufaktur sebagai mesin pertumbuhan.
- ➤ Kini, setelah menjadi importir netto minyak bumi sejak 2004 dan neraca migas terus kian defisit, perekonomian kita tak lagi bisa bertumpu pada eksploitasi minyak (dan gas) bumi.
- Rahmat Tuhan YME: dunia pun menyadari bahwa eksploitasi besar-besaran sumber energi fosil (abad 20) telah berdampak buruk peningkatan pencemaran dan degradasi lingkungan, penyusutan sumber daya alam, ketak-setimbangan biosfir, dan perubahan iklim.
- Harus mengalihkan tumpuan ke sumber daya energi yang tak memiliki dampak buruk tersebut (= sumber energi nir-karbon)!.

Zaman Batu berakhir bukan karena tak ada lagi batu, dan demikian juga, Zaman Energi Fosil akan berakhir bukan karena tak ada lagi sumber daya fosil!.

Tantangan ke depan


- Sumber energi nir-karbon : sumber daya nabati (*bioresources*), energi termal samudra (*ocean thermal energy*), tenaga-tenaga air, angin, ombak, arus laut, panas bumi dan nuklir.
- Hanya sumber daya nabati yang sumber daya bahan bakar, yang lainnya adalah sumber daya listrik!.
- Di zaman energi fosil (abad 20) dikembangkan aneka teknologi untuk mengkonversi bahan bakar menjadi listrik!.
- Menjelang zaman energi nir-karbon (mulai 2060?), akan dikembangkan aneka teknologi untuk mengkonversi listrik menjadi bahan bakar.
- Mengapa?.
- Perhatikan <u>energi surya</u>: <u>sumber terbesar energi terbarukan dan pendapatan alami planet bumi</u>.

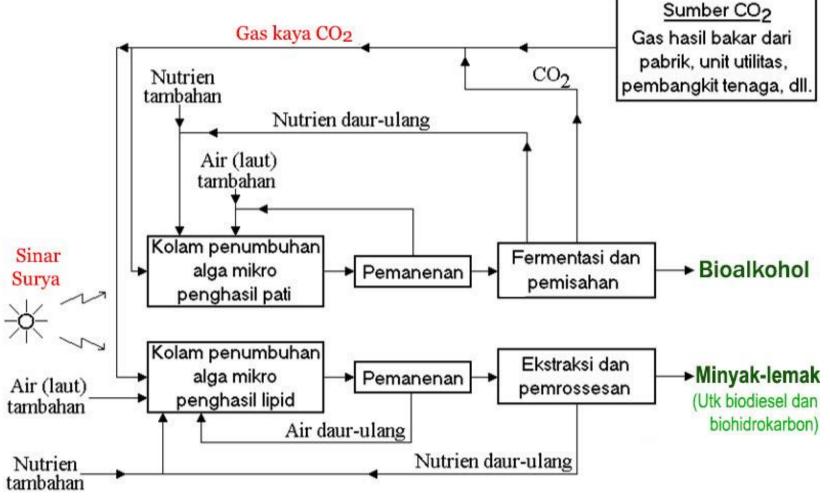
- Pembangkitan skala besar listrik dari energi surya memerlukan penutupan sebagian (kecil) permukaan bumi.
- ➤ Tak boleh menutupi lahan/daratan subur, ⇒ bersaing dengan pertanian (produksi pangan dll).
- > Pilihan permukaan bumi yang bisa ditutup:
 - ☑ Eropa dan Afrika : Gurun Sahara.
 - ☑ Australia : gurun di bagian tengah benua.
 - **☑** Indonesia? : Laut!.
- Dengan hanya menutupi 300 x 300 km permukaan bumi, listrik surya (termal maupun fotovoltaik) yang cukup untuk seluruh dunia dapat dibangkitkan!. Tetapi, bagaimana menghantarkannya?.
- Listrik dapat disimpan dalam baterai, tetapi umur simpan terbatas + ada bobot kosong baterai.
- > SOLUSI: konversikan listrik (via reduksi elektrokimia CO₂) ke bahan bakar cair (sudah terbukti bisa diniagakan antar benua).


Asam format sebagai cairan pembawa hidrogen

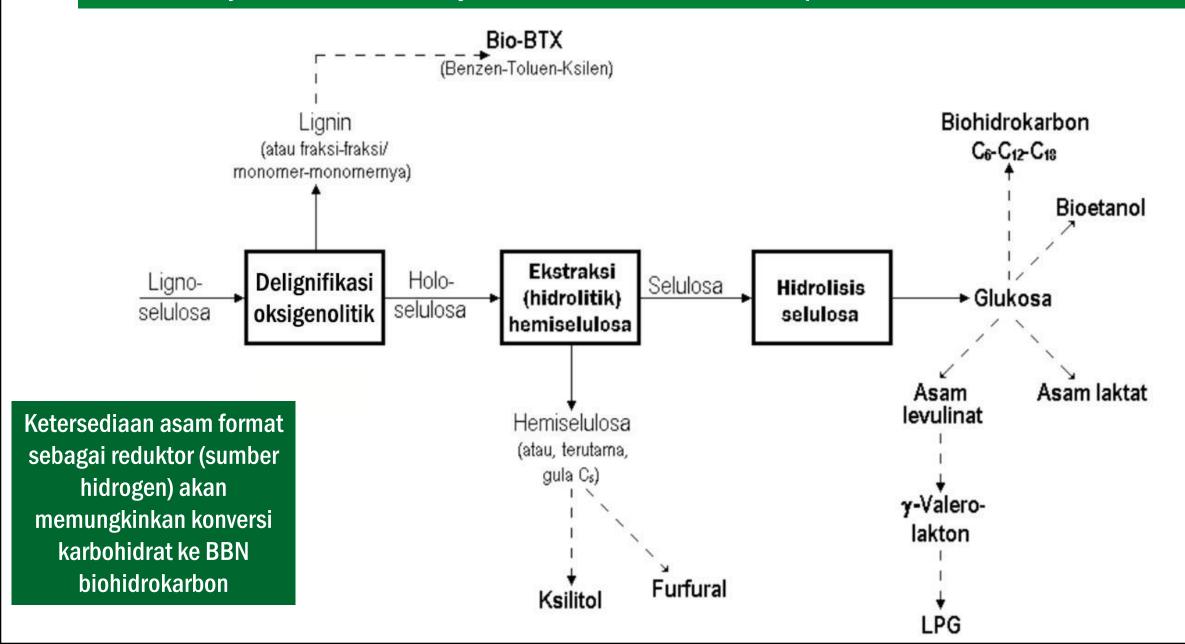
- ➤ Dua pilihan produk cair hasil reduksi elektrokimia CO₂: metanol (CH₃OH) dan asam format (HCOOH).
- > Asam format lebih unggul :
 - ☑ Rintangan termodinamik pembentukannya dari CO₂ lebih mudah diatasi;
 - ✓ Dapat diurai balik menghasilkan gas hidrogen (H₂) pada suhu < 100 °C (metanol butuh ≈ 200 °C).
 - ☑ Dapat digunakan untuk mereduksi molekul-molekul biomassa di dalam fasa akuatik ke arah pembentukan bahan bakar nabati (BBN) biohidrokarbon.
 - ☑ Dapat langsung membahan-bakari *formic acid fuel cell* (sel bahan-bakar asam format).
- ➤ Kalau sumber CO₂-nya berasal dari pembakaran sumber daya fosil, sekaligus meredam/menurunkan emisi CO₂.

Rute-rute berkelanjutan produksi asam format

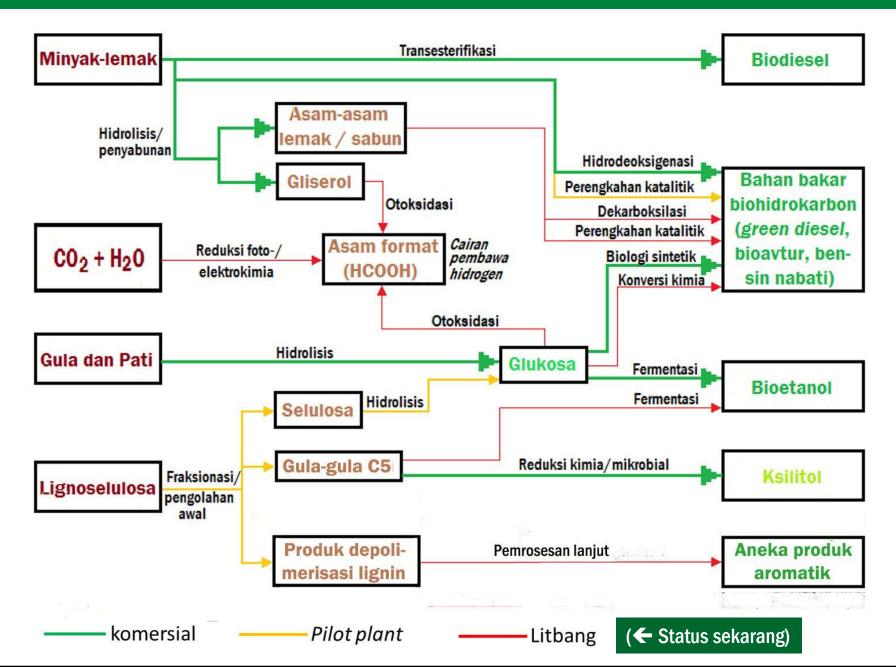
"Tenaga semut (ant power)": listrik berbasis asam format



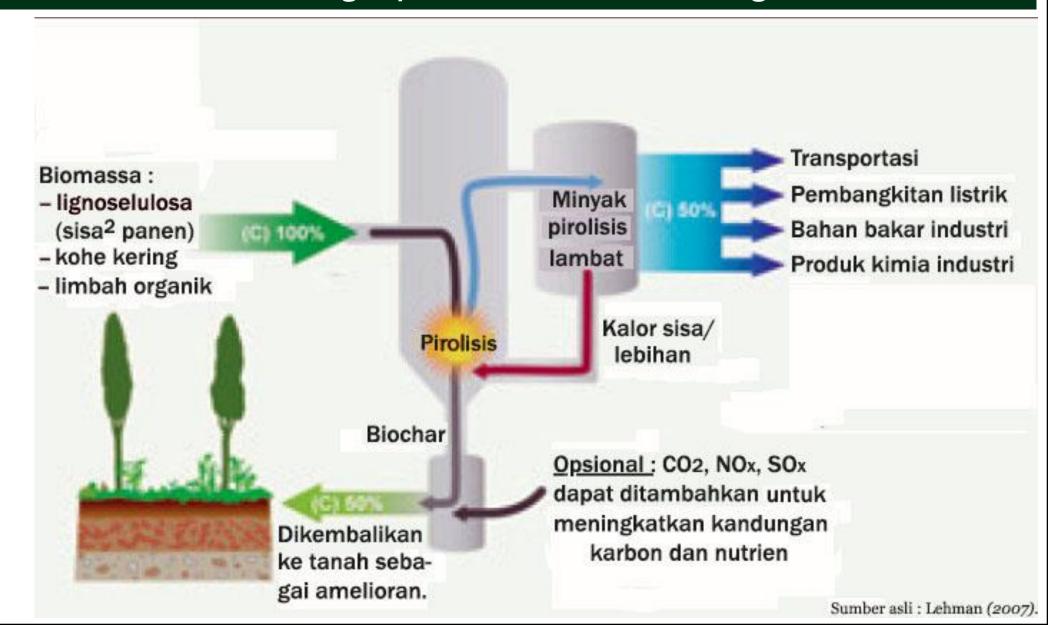
Pembangkit listrik 25 kW berbasis sel bahan-bakar asam format


Bus bertenaga sel bahan-bakar asam format

Teknologi peredaman penurunan emisi CO₂ yang lain : Produksi BBN via budidaya-dipercepat mikroalga di pesisir!



Teknologi yang efektif untuk fraksionasi lignoselulosa dan pengolahan (temperatur rendah) fraksifraksinya akan berhasil diwujudkan → aneka BBN cair dan produk kimia bernilai tambah.


Panorama Masa Depan Teknologi Bahan Bakar Nabati (BBN) Cair

Teknologi beremisi gas rumah kaca (GRK) negatif yang relatif paling murah:

Kombinasi <u>pirolisis lambat</u> biomassa dengan pemanfaatan biochar sebagai amelioran tanah

Teknologi
penting dalam
menuju
tercapainya
net-zero
emission!.

Jadi: Gambaran Masa Depan (1)

- Listrik terbarukan akan menjadi energi final yang (lebih) dominan.
- > Jarak antara pusat pembangkitan dan pasar akan membuat (surplus) listrik dikonversi menjadi bahan bakar cair via teknologi elektrokimia.
- Asam format akan muncul sebagai (salah satu) cairan pembawa (energi) hydrogen melalui reduksi CO₂ dengan teknologi elektrokimia, fotoelektrokimia, maupun fotosintesis artifisial.
- Sel bahan-bakar asam format (*formic acid fuel cell*) akan bisa menyediakan listrik secara terpusat, tersebar, maupun untuk kendaraan.
- Eersama dengan (surplus) minyak-lemak dari tanaman darat, minyak mikroalga akan menjadi bahan mentah utama produksi biodiesel dan aneka bahan bakar biohidrokarbon.
- ➤ Karbohidrat (terutama selulosa) tanaman darat maupun perairan tidak hanya akan tetap menjadi sumber BBN bioalkohol, melainkan (dengan bantuan asam format sebagai reduktor) juga dapat dikonversi ke BBN biohidrokarbon.

Gambaran Masa Depan (2)

- Disamping kendaraan-kendaraan listrik baterai (BEV), kendaraan-kendaraan berbahan bakar cair (apalagi untuk transportasi udara) akan tetap ada dan dibutuhkan, dengan bahan bakar yang kian berkelanjutan dan teknologi propulsi *fuel cell* dll.
- ➤ Pemanfaatan *biochar* dari pirolisis lambat biomassa sebagai amelioran tanah akan dapat membantu menetralkan emisi CO₂ dari pendayagunaan sumber daya fosil dan, kemudian, juga menurunkan kadar CO₂ di atmosfir.

Sekian dan Terima Kasih

thsoerawidjaja@gmail.com