

DIRECTORATE GENERAL OF NEW, RENEWABLE ENERGY AND ENERGY CONSERVATION MINISTRY OF ENERGY AND MINERAL RESOURCES

ENERGY TRANSITION IN INDONESIA AND FUTURE MOBILITY

Gigih Udi Atmo

Director of Energy Conservation

Presented at:

Utilization of Renewable Energy Towards Net Zero Emission in 2060

BSD, 18 August 2023

ENERGY SECURITY FACING GLOBAL ENERGY MARKET

OIL CONSUMPTION IS HIGHER THAN PRODUCTION

02

FLUCTUATION OF ENERGY PRICE

- **01** Fossil energy prices fluctuate according to the global energy market
 - Energy as national development capital (not a commodity)
- **03** Renewable Energy prices do not follow energy market prices

source: Ditjen Migas; Ditjen Minerba; https://3mgas.vn/

Energy Equivalence

Environmental Sustainability

D1 *Energy Equity* The energy provided is accessible and affordable to everyone.

02 Energy Security

ENERGY TRILEMA

Efforts to provide energy while taking into account the supply chain of domestic and foreign sources and the ability to meet increasing demand with reliable infrastructure.

03 Environmental Sustainability

Development of infrastructure based on renewable energy and other low-carbon energy sources as well as increasing energy efficiency from both supply and demand sides.

GHG EMISSION REDUCTION ROADMAP IN ENERGY SECTOR

Indonesia continues to take concrete steps in climate mitigation, including reducing GHG emissions by increasing the target to **31.89%** on its own, and **43.20%** with international support.

Enhanced NDC 2030

No		GHG Emission	GHG E	Emission by	Emission Reduction		
	Sector	2010 (Juta Ton CO ₂ e)	BaU	CM1	CM2	CM1	CM2
1.	Energy	453,2	1.669	1.311	1.223	358	446
2.	Waste	88	296	256	253	40	45,3
3.	IPPU	36	70	63	61	7	9
4.	Agriculture	111	120	110	108	10	12
5.	Forestry	647	714	217	-15	500	729
	TOTAL	1.334	2.869	1.953	1.632	915	1.240

Notes:

CM: Counter Measure; CM1: own-national effort; CM2: International Assistance; IPPU: *industrial processes and production use*

*) 2022 achievement verified by Ministry of Environment and Forestry
 *) Target according RENSTRA KESDM 2019 - 2024

Achievement

Target

"

Energy sector mitigation actions include:

NRE development, energy efficiency implementation, low carbon fuel (natural gas), clean power plant technology and other activities.

142

2024

116

9191.

ENERGY SECTOR COMMITMENT FOR ACHIEVING E-NDC (CM-1) 2030 💋

- Mitigation activities in the energy sector must be fulfilled from their own efforts and not to be traded abroad.
- Other potential activities outside the E-NDC include: CCS/CCUS, Gas Flare, and PLTU Early Retirement have not been taken into account. Currently in the methodological development stage.

INDONESIA'S ENERGY SECTOR ROADMAP TOWARDS NET ZERO EMISSION 2060

COP 26, 2 NOVEMBER 2021

- Indonesia will be able to contribute faster to the global Net-Zero Emissions.
- The MEMR along with other stakeholders created the Energy Sector Roadmap towards Indonesia NZE 2060.

Energy Sector Roadmap for NZE 2060 or sooner

Directorate General of NREEC @2023

TOTAL PROJECTION OF DEMAND NZE 2060

- The energy demand growth rate is projected to rise by 1.8% per year. Energy demand is expected to increase from 142 MTOE in 2020 to 519 MTOE (BaU) in 2060.
- Through mitigation actions and energy conservation activities, it is estimated that there will be a decrease in energy demand by 209
 MTOE (40%), so that energy consumption will be 310 MTOE in 2060.
- According to IEA report, nearly 300 billion USD was allocated for energy efficiency in 2021, illustrating high potential value for energy conservation globally.

Energy demands sectors will have higher shares of NRE due to the implementation of key policies in both NRE and fossil fuel subsector

Government Regulation No. 33/2023 On Energy Conservation has been published 🥝

ASEAN INDONESIA 2023

As the revision on government regulation no. 70/2009

The direction of Arrangement

- 1. Implementation of energy conservation:
 - energy supply side (ESDM sector)
 - energy utilization side (transportation, industry, buildings and household sectors)
- 2. Mandatory to implement energy conservation through energy management for Energy Users whose energy consumption is ≥ the determined mandatory threshold
- 3. Implementation of energy conservation by Ministries / Agencies and Local Government
- Minimum Energy Performance Standards (MEPS) and Energy Saving Labels on energy user equipment
- 5. Guidance and supervision
- 6. Incentives and disincentives
- 7. Energy conservation services business (ESCO)
- 8. Financing
- 9. Human resource capacity building
- 10. Data and Information

ENERGY CONSERVATION REGULATION

	Gov. Reg on Energy Conservation No 70/2009	Gov. Reg on Energy Conservation No 33/2023
Government and Local Government Responsibilities	Do the activities according to the scope of the area	Describe the subject, implementation, budgeting, and reporting
Scope of Sectoral Obligations	Not detailed per sector, only mentions users of energy sources and/energy	The scope of energy conservation is more detailed with obligations for each sector including energy providers
Funding and Reporting	Very limited and no thorough	Covers the use of budgets, PPP schemes, as well as tiered reporting, monitoring evaluation and rating
Incentives and Disincentives	Lack of incentives and disincentives implementative	Incentive and disincentive schemes are clarified according to authority
Data-Information, Guidance and Supervision	Data and information do not exist; binwas not specified	Manage access, distribution and exchange of data/information; supervision object and the formation of JFT

ENERGY CONSERVATION TARGET

Final Energy Consumption

Transportation Sector : Fuel Oil (99.9%), Gas (0.02%) and Electricity (0.05%) Industrial Sector : Coal (62.2%), Gas (15.3%) dan Electricity (14.5%) Commercial Sector : Electricity (87.3%), Fuel Oil (5.1%) dan LPG (4.0%) Household Sector : LPG (48.5%), Electricity (49.4%) and Kerosene (1.8%)

Most Final energy consumption comes from **industrial sector followed by transportation sector.** Both sectors dominates energy use in Indonesia

01

02

ENERGY SAVINGS POTENTIAL

INDUSTRY

Consumption 2021: 288 MBOE Energy savings potential 10-30 %

Implementation:

- Energy Audit/ IGA/ ESCO
- Energy Management/ ISO 50001
- Online Reporting System
- Energi Manager and auditor certificate
- Public awareness improvement
- Pilot Project

COMMERCIAL

Consumption 2021: 42 MBOE Energy savings potential 10-30 %

Implementation:

- Energi Audit/ IGA/ ESCO
- Pilot Project
- Energy efficiency standard
- Online Reporting System (Buildings)

TRANSPORTATION

Consumption 2021: 388 MBOE Energy savings potential 15-35 %

Implementation:

- Mass transportation (BRT/ MRT/ LRT)
- *Fuel Switching* (BBM/fuel to Gas & Biodiesel)
- Transportation Management System

HOUSEHOLD

Consumption 2021: 143 MBOE Energy savings potential 15-30 %

Implemenntation:

- EE Standard (Label/ MEPS)
- Public Awareness improvement

Sumber: Handbook of Energy & Economic Statistics of Indonesia 2020 Final Edition, MEMR

TRANSPORTATION POLICIES TOWARD NET ZERO

ENERGY PROJECTION (MTOE)

250.0 209 201 184 176 200.0 151 142 150.0 109 79 100.0 52 50.0 2020 2025 2055 2030 2035 2040 2045 2050 2060 ■ Jalan Raya ■ Kereta ■ Udara ■ Air

EMISSION PROJECTION (Mton CO2)

Directorate General of NREEC @2023

Policies and Actions

- 1. Stop Impor fuel 2030;
- 2. Biofuel implementation 40% (B-40);
- Electric Vehicle in transport sector by accelerating sales of electric motorcycle 100% in 2035 and electric car in 2040;
- 4. Hydrogen for truck. Sales penetration for hydrogen trucks 5% in 2040 and 20% in 2060;
- Eco-fuells (Environmentally friendly/low carbon fuel for aviation) starting in 2040 and reaching 45% in 2060;
- 6. Low-carbon fuel for shipping starting in 2036 with a blend of e-ammonia, hydrogen and biofuel;
- 7. E-fuel (derived from biosyngas and green hydrogen) for vehicles.
- 8. Electrification at ports or electric vessels for shorter distances and/or hybrid vessels.
- **9.** Technology efficiency in the transportation sector is projected to be 20-25% in 2060.

BIOFUELS DEVELOPMENT PLAN (2021-2040)

Unit : Million KL	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Biodiesel	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10.2	10.5	10.8	11.1	11.3	11.5	11.5	11.6	11.6	11.6	11.7	11.7
Co-processing Green Diesel	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Standalone Green Diesel	0.0	0.2	0.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Co-processing Green Gasoline	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Standalone Green Gasoline	0.0	0.0	0.1	0.3	0.5	0.8	1.1	1.4	1.7	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Total Biofuels	9.2	9.7	10.0	11.3	11.6	12.0	12.4	12.8	13.4	14.0	14.3	14.6	14.8	15.0	15.0	15.1	15.1	15.1	15.2	15.2
 PREPARATION FOR B40 INPLEMENTATION B40 Technical Study And Ust In Fuel used in Road Test B40: B30D10 >> 30% Biodiesel (B100*) + 10% Biodiesel/Biohydrocarbon Diesel/HVO (D100) + 60% Diesel (B0) 																				

B40 >> 40% Biodiesel (B100*)
 + 60% Diesel (B0)

2. The road test distance is 50,000 km for \leq 3.5 ton automotive and 40,000 km for > 3.5 ton

B40 Road Test Activity Timeline

Launching Road Test

🚘 Road Test

NATIONAL PRIORITY PROGRAM: GREEN FUELS – 1 "MERAH PUTIH" CATALYST FACTORY, WEST JAVA	NATIONAL PRIORITY PROGRAM: GREEN FUELS – 2 GREEN REFINERY PLAJU, SOUTH SULAWESI	NATIONAL PRIORITY PROGRAM: GREEN FUELS – 3 GREEN REFINERY CILACAP UNIT TDHT (REVAMPING)	NATIONAL PRIORITY PROGRAM: GREEN FUELS – 4 HIDROGENASI CPO AT RU IV CILACAP
IVO DEVELOPMENT DEMOPLANT AT MUSI	PALM OIL GASOLINE DEVELOPMENT		UCO FOR GREENFUELS
BANYUASIN	CENTRAL JAVA	BIOAVTUR J2,4	AND APJETI

- 1) Since 2020, Mandatory B30 has been implemented in all sectors/users.
- 2) Development of Co-Processing Green Diesel at Pertamina RU II Dumai is targeted to start commercial production in 2023.
- 3) Development of Stand Alone Green Diesel by PT Pertamina.

Revamping phase I @ RU IV Cilacap in 2022; *Revamping phase* II @ RU IV Cilacap in 2023; RU III Plaju *standalone green refinery* in 2024.

4) Green Gasoline Development

- Non Pertamina stand alone green gasoline
 - 1) Musi Banyuasin (development of community-based palm oil gasoline projects by involving cooperatives).
 - 2) Replicate the development of community-based palm oil gasoline projects in palm oil plantation in North Sumatera, Riau, South Sumatera, West Kalimantan, East Kalimantan Timur and Papua.
- Co-processing green gasoline project at Pertamina RU III Plaju.

5) Production of Merah Putih Catalyst.

URGENCY OF DETERMINING FUEL ECONOMY STANDARDS (FES)

- The fuel economy/ CO2 emission standards are the main policy instruments that will enable Indonesia to achieve the level of increased energy efficiency and electrification needed to achieve Net Zero in the transportation sector. The preparation of FES has also been mandated in the National Energy General Planning (RUEN).
- Standards are also an important driving factor for the adoption of EVs in Indonesial.
- In the transportation sector, implementing fuel economy standards in 2025 and accelerating vehicle electrification can save energy consumption equivalent to 8.4 million toe in 2030. By 2050, savings can reach 62 million toe. At current oil prices, these savings equate to cost savings of USD 4.9 billion and USD 36.3 billion, respectively.
- Standards have an important role to play in driving improvements in the fuel economy

Sumber: Transport and the Environment 2021

• Di US, standar untuk truk diperkenalkan pada 2011 yang memastikan penerapan tekonologi hemat energi serta memberikan *energy efficiency gain* sebesar 24% dari tahun 2011 - 2017

DEVELOPMENT OF FUEL ECONOMY STANDARD WILL BE FOCUS ON TRUCKS

Energy demand projection per mode transport 2020 – 2060

Source: Draft Net Zero Emission Roadmap in Indonesia

- Trucks are the largest energy user in the road transportation subsector.
- Trucks with internal combustion engine (ICE) technology will still dominate energy use in the future and are a major source of air pollution, so improving truck efficiency is important.

GLOBAL TRENDS ON EV

CHARGING INFRASTRUCTURE

- 1. The global stock of public chargers reached 2.7 billion Availability of public charging points has kept pace with electric car deployment, with the stock increasing 55% in 2022.
- 2. Globally there is a ratio of 10 EVs per public charging point.

BATTERY

1. Battery material prices increase in 2022

The average price of EV batteries increased for the first time in 2022, though the impact varied across different battery chemistries.

2. Alternative battery chemistries on the rice LFP batteries rely less on expensive metals like cobalt and nickel, leading to their recent increase in market share

SALES

led

 Electric cars sales exceed 10 million in 2022. Sales of electric cars were up 55% in 2022, led by China, Europe, and the United States

2. Electric cars are reaching mass-market adoption in many cases.

Electric cars account for more than 20% of total sales in China and more than 10 countries

3. Electric cars are beginning to sell in emerging economies

Although motorcycles are generally much more prevalent in emerging economies, electric cars jumped in India, Indonesia and Thailand

4. Large models and SUVs dominate car sales

Large cars and SUV's made up over 45% of electric car sales in 2022

5. Sustained policy support underpins EV growth

Global total spending on electric cars reached USD 425 billion in 2022, with the share of government support in total spending around 10%.

Source: IEA, 2022

ELECTRIC VEHICLE ROADMAP

Activities	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Number of Electric Car (commulatif)	500	93.875	187.250	280.625	374.000	738.200	1.102.400	1.466.600	1.830.800	2.195.000
Number of electic motorcycle (commulative)	200.000	3.098.250	5.996.500	8.894.750	11.793.000	12.034.800	12.276.600	12.518.400	12.760.200	13.002.000
Energy savings (MBOE)	0,25	4,37	8,49	12,62	16,74	19,35	21,96	24,57	27,18	29,79
Emission Reduction (MtonCO2-e)	0,1	1,2	2,3	3,4	4,5	5,1	5,6	6,1	6,7	7,2

Electric Cars Boadman	Notes				
Electric Cars Roaumap	units				
Mileage 1 tahun	18.000	km			
Total vehicles by 2030	2.195.000	unit			
Energy Savings 2030	13,96	MBOE			
Emission Reduction 2030	2,79	Mton CO2			

Efficiency Comparison for Electric Cars and Motorcycles vs Conventional / Internal Combustion Engine (ICE)	Electric Cars	Conventional Cars	Electric Motorcyle	Conventional Motor Cycle
Energy Consumptio	r <mark>0,123</mark> kWh/km	0,083 liter/km	0,033 kWh/km	0,033 liter/km
	0,44 MJ/km	2,46 MJ/km	0,12 MJ/km	0,99 MJ/km
Emission	178 Rp/km	747 Rp/km	48 Rp/km	300 Rp/km
	108 gram C02/km	178 gram C02/km	29 gram C02/km	72 gram C02/km

Source: Directorat Energy Conservation, DGNREEC 2020

Electric Motorcyle Poodmon	Notes Units				
Electric Motorcyle Roadillap					
Mileage 1 tahun	8.000	km			
Total vehicles by 2030	13.002.000	unit			
Energy Savings 2030	15,83	MBOE			
Emission Reduction 2030	4,44	Mton CO2			

2030

- Total energy savings: 29,79 MBOE
- Total emission reduction : 7,23 million ton CO2-e

Notes:

- Sources: GSEN-KESDM target, National Energy Council, and BPPT.
- Assumptions: NCV Pertamax: 29,65 MJ/liter, Emission Factor: Pertamax: 2,15 kg CO2/liter, Emission Factor Electricity : 0,877 ton CO2/MWh,
- The Average Electrical Consumption of electric vehicles refers to the results of studies in India for city driving ranges, namely 123 Wh/km for electric cars and 33 Wh/km for electric scooters (source: KBLBB-KESDM).
- The average mileage per year for cars is 18 thousand km and motorcycles is 8 thousand km.
- Fuel cost (pertamax): Rp 9000/liter and Electricity tariff: Rp 1444,7/kWh

MEMR REGULATION 1/2023 ON PROVISION OF EV CHARGING STATION (EVCS) INFRASTRUCTURE

Office

INFRASTRUCTURE SUPPORT FOR EV CHARGING STATION

Public Electric Vehicle Charging Station (SPKLU) & Public Electric Vehicle Battery Swap Station (SPBKLU) 2020-2030

	Unit	2021	2025	2030
SPKLU	Unit	572	6,318	31,859
SPBKLU	Unit	3,000	17,000	67,000

CHARGING STATIONS PROVISIONS

Directorate General of NREEC @2023

- Electricity Supply Business License (IUPTL) and Business Area;
- State owned energy company and/or other business entities;
- Initial assignment for PLN;
- PLN can cooperate with BUMN and/or other business entities.

Installation cost; and/or

Electricity subscription guarantee; also

Mi E>

Minimum Account Exemption for the first two years

Discount on electricity tariff for charging BEV battery at 22:00 to 04:00 the following day.

Source: Directorate General of Electricity, MEMR 2023 19

EV UNITS AND ITS INFRASTRUCTURE DEVELOPMENT

A. BATTERY-BASED ELECTRIC VEHICLES (KBLBB) PROGRAMS

Energy savings up to 29.79 MBOE

Total GHG emission reductions up to 7,23 Million ton CO₂e

adan Penelitian dan Pengembanga ergi dan Sumber Dava Mine

⊡| (€)

of

in 1282 locations.

Uji Jalan Motor Listrik Hasil Modifikasi Motor Bensin cepatan rata-rata = 30km/ian = ±15 menit = naik-turun-rata = 1 pengendara (65kg) = 84V = 69V = 15V

TWO-WHEELERS 13 million unit 67.000 SPBKLU*

DEVELOPMENT

ROADMAP

(2030)

SPBKLU: General Electric Vehicle Battery Exchange Station

FOUR-WHEELERS/More 2 Million unit 32.000 SPKLU*

SPKLU: General Electric Vehicle Charging Station

KBLBB will be used as a delegation vehicle at the G20 summit

Gas Station

B. ELECTRIC MOTORCYCLE CONVERSION PROGRAM

Electric Motor Conversion Program

The Ministry of Energy and Mineral Resources has conducted trials on converting BBM motors into electric motors to obtain certification at the Ministry of Transportation for a total of **127 units**. A total of **22 units** of them have received documents in the form of STNK from the National Police Traffic Corps (until November 2022).

Incentives Policy

Carry out the mandate of **Presidential Regulation 55/2020** concerning the Acceleration of the KBLBB Program and Presidential Instruction 7/2022 concerning the Use of KBLBB as official vehicles for central and regional government agencies

Supporting the achievement of reducing national greenhouse gas emissions.

Reducing fuel oil imports to improve the national trade balance.

Creating an ecosystem for Battery-Based Electric Motorized Vehicles

50,000 units of electric motorbikes conversion

2024 1

150,000 units of electric motorbikes conversion

Thank You

www.esdm.go.id

Kementerian Energi dan Sumber Daya Mineral

@KementerianESDM

KementerianESDM

ENERGY INTENSITY PROJECTION BY TYPE OF TRANSPORTATION SECTOR

Source: MEMR 2021 NZE LEAP Modeling, processed

PROJECTION OF ENERGY INTENSITY (EFFICIENCY TRENDS)

Energy Intensity Trend in Internal Combustion Engine (ICE) Technology

Energy Intensity Trends in Electric Vehicles Technology

Sumber: Pemodelan LEAP NZE KESDM 2021, diolah

BIODIESEL ACHIEVEMENTS

NRE contribution on the Total Primary Energy Mix @2021: 12.16%, of which 36% was from biodiesel utilization (B30)

BIODIESEL IMPLEMENTATION (TARGET & REALIZATION)

BENEFIT OF BIODIESEL MANDATORY PROGRAM

DENIECIT	BENEFIT VALUE									
DEINEFTT	B20 IN 2018	B20 IN 2019	B30 IN 2020	B30 IN 2021						
Volume	3,75 Million kL = 23,59 Million BPY = 64,62 thousand BPD	6,39 Million kL = 41,68 Million BPY = 114,21 thousand BPD	8,4 Million kL = 52,83 Million BPY = 144,74 thousand BPD	9,3 Million kL = 58,41 Million BPY = 160,03 thousand BPD						
Foreign Exchange Savings	USD 1,89 Billion = Rp 26,67 Trilion	USD 3,04 Million = Rp 43,82 Trilion	USD 2,64 Million = Rp 38,04 Trilion	USD 4,62 Million = Rp 66,54 Trilion						
Increasing Added Value from CPO to Biodiesel	Rp 5,78 Trilion	Rp 9,54 Trilion	Rp 10,28 Trilion	Rp 11,29 Trilion						
Employment	On farm: 478.325 farmers Off farm: 3.609 farmers	On farm: 828.488 farmers Off farm: 6.252 farmers	On farm: 1.071.491 farmers Off farm: 8.085 farmers	On farm: 1.160.889 farmers Off farm: 8.760 farmers						
Reduction of GHG Emission	9,96 million ton CO_2	16,98 million ton CO ₂	22,3 million ton CO_2	24,6 million ton CO ₂						

